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Applications-driven motivation and facility boundary conditions
Experimental mindset: SPIDER example
Walking toward MORD0R: DANCE example
MORD0R concept
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Why does LANL care about nuclear physics?

Successful test July 16, 1945
...maybe we need some nuclear
physics
We want to understand reactions e.g.
fission
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So what is nuclear fission?

1. Incident neutron excites nucleus to
“fission barrier” (10−20 s)

2. Nucleus evolves to scission (10−20 s)
3. Fragments accelerate away (10−19 s)

≥1000 resulting mass combinations(!)

4. Neutrons, γ-rays emitted (10−17 - 10−13 s)
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...and how do we actually study it at LANL?
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We need other reactions too
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Fission produces neutrons as well as hundreds of daughter nuclei
The distribution of these “exhaust fumes” can be relevant for applications
The production and evolution of these fission fragments must be
understood - need e.g. (n,2n), (n,γ) reaction rates
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Boundary condition: LANSCE as a capability

1/2 mile long LINAC drives 800 MeV proton beam
Neutrons produced by spallation (smash protons into some material)
Time of flight “white source” - shape measurements are good
Machine can be flexible w/ pulse structure, where beam goes pulse to
pulse
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...so what makes a meaningful experiment?

Example physics case: fission product yields (FPY)

Scarce, dated, or discrepant data is a challenge for evaluation
Most data is for cumulative (β-delayed) not independent (prompt)
We want the independent FPY curve from <1 MeV to 20 MeV

M. Gooden et al., EPJ Conferences 146, 04024 (2017)
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A suckless approach to mass measurements

Options for mass measurements:
Magnetic Spectrometer: Lohengrin at ILL has great resolution, impractical
efficiency for our interests
2E: use TKE chamber and conservation of momentum to infer masses with
great efficiency, terrible resolution
2E,2V: measure velocities and energies of fission fragments to achieve
“good enough” resolution and efficiency
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Example: SPIDER as currently developed

“2E-2v” approach: E = 1
2 mv2 → m = 2E

v2

Measure velocity with MCPs, energy with
ion chambers.
Multiple spectrometer arms to increase
efficiency.
Objective: ≤ 1 AMU mass resolution,
∼1 % efficiency.
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What is the uncertainty of your uncertainty?

Recent projects with close connection to evaluation community (e.g.
Chi-Nu) have demonstrated the need to rigorously evaluate uncertainties.
Applied to SPIDER: ability to construct and monitor the mass response
function will dictate our ultimate uncertainty.
Want to measure a fundamentally smooth physics quantity with both high
resolution and high precision - how to know we’ve succeeded?
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Using γ-rays to tag nuclei
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Criteria: separable γ-ray lines with reasonable feeding (look at a lot of
even-even nuclei).
Ability to extend to edges of mass peaks will depend on design details,
practicalities of run time.
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...so what have we learned?

Interaction with detector physics and technology
All the easy measurements are (always) done
New measurements are always at the limit of something (e.g. detector tech)

Our ideal error bar is:
1. Small enough to matter
2. Understood enough to be believed
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A brief astrophysical aside

C. J. Prokop
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Where 65Cu sits

C. J. Prokop
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So what’s the reaction rate?

C. J. Prokop
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You really do want to know the right answer

C. J. Prokop
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How a DANCE measurement works

C. J. Prokop
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What data looks like

C. J. Prokop
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Backgrounds

C. J. Prokop
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Results

C. J. Prokop et al, PRC 99, 055809 (2019)
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How to break DANCE: radioactive targets
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γ-rays from decays overwhelms
physics signal
Detector response breakdown
from pileup, ultimate degredation
of observables (e.g. resonances)
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Remember: we care about unstable nuclei
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The current state of the art: LENZ example

LENZ does (n,p), (n,α) - radiation field from β-unstable nuclei ultimately
can kill detectors (analagous to DANCE)
Pursuing solenoid spectrometer to eliminate β, provide shielding from
direct γ field
Potential for ∼week half lives

H. Y. Lee and B. DiGiovine 2019
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...when you get really desperate: 237U(n,f)

J. H. McNally et al, PRC 9, 717 (1974) measured resonances in 237U(n,f)
(T1/2 6.7 d)
“The use of an underground nuclear explosion as an intense neutron
source for time-of-flight cross-section mesurements has been
described... The advantages of this method over more customary
laboratory sources lie in the extreme intensity of the neutron beam.”
Irradiated 236U at ORNL to 1.9% 237U, separated at LANL to ∼70% purity
for the experiment
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What I won’t talk about

DICER at LANSCE, β-Olso / Oslo, surrogates... are all indirect
techniques to constrain capture rates. Right now we’re talking about
direct measurements.
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How to build a neutron target (and why it helps)

R. Reifarth et al., Phys. Rev. Accel. Beams 20, 044701 (2017)

Need ∼1010 n/cm2 for this to work, potentially do (n,γ), (n,2n), (n,Z)
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How to make a ball of neutrons

Neutron production via
spallation
Large size limit: D2O
wins as a moderator
Heavy ion beam line
penetrates moderator
assembly
Proton beam, heavy
ion ring not
intersecting
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Neutron target monitoring

Neutron spectrum
unfolding from
activation foils is used
for e.g. critical
assembly experiments
Good to few percent,
precedent for
diagnosing issues with
past experiments

M. Mosby et al., LA-UR-15-24181
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How to detect reactions without detecting reactions

Schottky pickup has been used as a beam diagnostic, can observe
individual ions
Digitize time-domain pickup, analyze in fequency domain offline

B. Franzke et al., Mass Spec. Rev. 27, 428 (2008)
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Many beams can be in ring simultaneously

D. Shubina et al., PRC 88, 024310 (2013)
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How to make low-energy RIBs

S. Naimi (2010)
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Yeah, ISOL could work pretty well

“The IsoSpin Laboratory” LALP 91-51
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...why not do this at LANSCE?

Proton beams are needed for both RIB and neutron production
ISOL is the obvious choice for this application

Machine can deliver the necessary beam power - 1 mA “back in the day”
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Predicted reach using LANSCE accelerator complex
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What data could look like
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Where we are, where we are going

Workshop ”Opportunities with a Neutron
Target Facility” August 19 - 20

40 people, peer review of concept
Positive reaction, high TRL solutions exist
for each subsystem
Outcome: the concept is feasible. Go
work out the details

Working with AOT-AE to sort funding for
next steps

Integration with LANL Accelerator
Strategy
Exploration of subsystem integration,
staging options

Investigating impact - building
collaboration with XTD
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Conclusions

Neutron-induced reactions are a topic of general interest in nuclear
technology and nuclear astrophysics
The details matter when attempting to make an impactful measurement
(and there are many left to do)
Direct measurements for neutron-induced reactions on short-lived nuclei
are currently impossible due to technical limitations of the current
techniques
It appears possible to directly measure neutron-induced reaction rates for
a large swath of the relevant nuclei by combining existing beam and
detector technologies in a new way.
We are actively investigating this idea at LANSCE
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